

Mortars

- lime mortar
- lime mortar + volcanic ash (pozzolanic ash)
- lime mortar + brick dust (Aegean area)
- •gypsum mortar

Surfaces

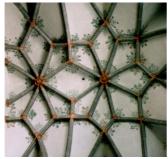
- brick
- stone
- plaster
- painted surfaces

HISTORIC OVERVIEW

Ancient Egypt Greece and Rome

István Vidovszky PhD

Department of Construction Technology and Management



Surfaces

- brick
- stone
- plaster
- painted surfaces

Mortars

- •lime mortar
- •cocciopesto in cellars (Venice)
- •cocciopesto plasters in swimming pools (turkish bath)

HISTORIC OVERVIEW

Middle Age

István Vidovszky PhD

Surfaces

- •brick / stone
- stone mouldings
- + rendered surfaces

HISTORIC OVERVIEW

Renaissance

Mortars

- •lime mortar
- •cocciopesto

István Vidovszky PhD

Department of Construction Technology and Management

Surfaces

- •brick / stone
- * rendered mouldings (quoin and window frames) + rendered surfaces (=pargeting "plaster architecture")

Mortars

- •lime mortar
- •gypsum mortar
- •17th century trass (Nette, Bohr) Dutch Dam constructions

HISTORIC OVERVIEW

Baroque

István Vidovszky PhD

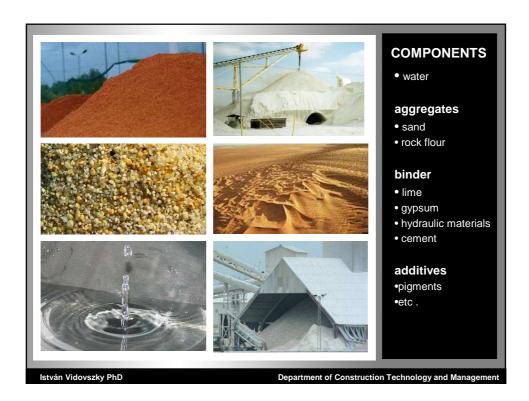
Surfaces

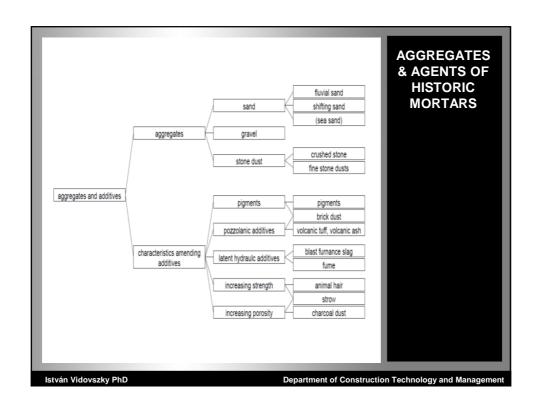
- brick / stone
- stone quoins, window frames
- + rendered surfaces

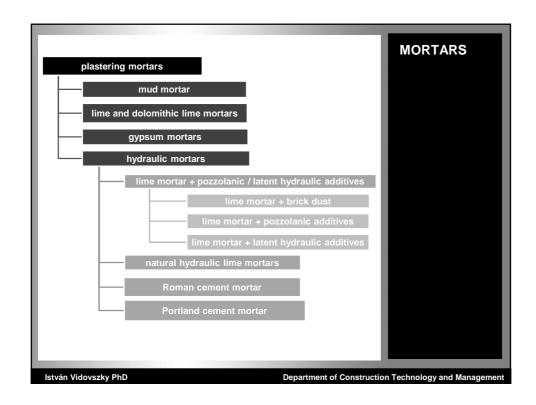
Mortars

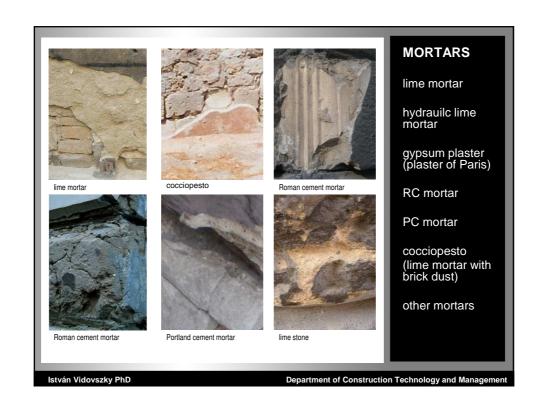
- •lime mortar
- •all historic hydraulic mortar
- •natural hydraulic lime (NHL)
- •spread of cements

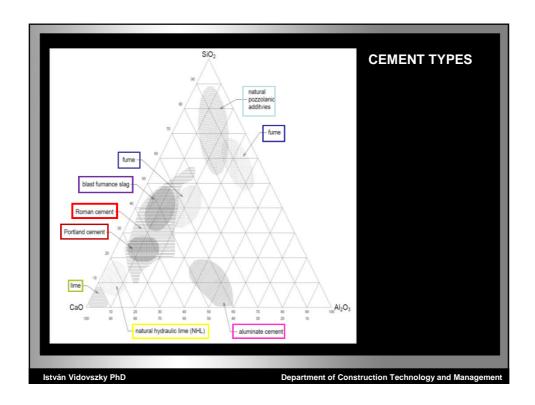
Classicism 19th century

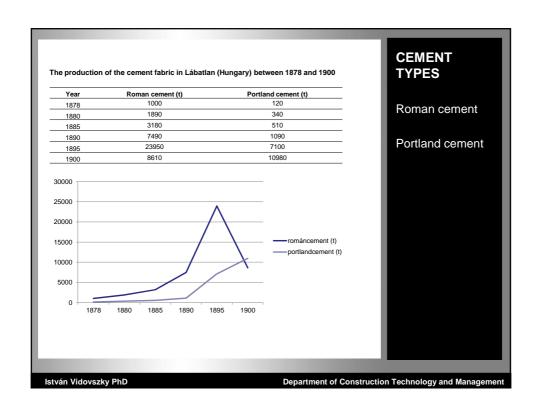

István Vidovszky PhD


Department of Construction Technology and Management

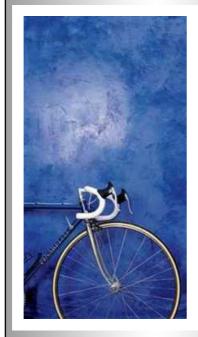

1755-59	John Smeaton uses hydraulic lime mortars at the construction works of the Lighthouse at Eddistone	
1796	James Parker – patent of Roman cement	
1820	Directions for Engineers (Hungary) – prescriptions for the application of hydraulic limes (pozzolan, trass)	
1824	Joseph Aspdin – patent of Portland cement	
1840-42	Construction of the Chain Bridge in Budapest – on-site production of Roman cement (natural cement)	
1844	Isaac Charles Johnson – clinker burnt over shrinkage temperature	
1860	Lábatlan, Piszke – The first cement factories in Hungary	
1860-89	Establishment of several cement factories all over the country (Beocsin, Nyergesújfalu, Mogyoróska, Újlak(Óbuda), Gurahonc, Lédec + continuous cement import (mainly from Austria)	
1897	Prescriptions of the Hungarian Association for Architects and Engineers (the first standard for cement)	


HISTORY OF THE MODERN CEMENTS


István Vidovszky PhD



DECORATIVE PLASTER COATINGS


- •stukko-lustro
- tadelakt
- •artificial marble types
- •calce rasata

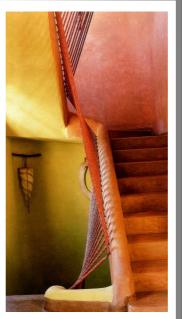
SURFACE DECORATION OF THE PLASTER COATINGS

- •patterned plaster surfaces
- •fresco
- pargeting
- sgraffito
- •plaster inlay
- •plaster relief
- •etchwork in plaster

István Vidovszky PhD

CALCE RASATA

work sequence:


- 1. wetting the wall
- 2. 2 coats of plaster
- smoothing rubbing (with a sponge)
- drying (binding)
- wetting the wall
- 4-5 coat of smoothed, colored limewash
- polish
- 9. making waterproof

István Vidovszky PhD

Department of Construction Technology and Management

TADELAKT

work sequence:

1.base coat of

normal plaster 2.coat of Tadelakt mortar 3.rubbing (with a board) 4.smoothing 5.rubbing (with pebble)

6.polishing

István Vidovszky PhD

ARTIFICIAL MARBLE

work sequence:

1.base coat of plaster
2.smoothing coat
3.preparing color rolls
of the gypsum pulp
4.marble-like smear of
the gypsum rolls on
the surface
5.drying
6.3x polishing +
scraping

7.lenseed oil + polishing

István Vidovszky PhD

Department of Construction Technology and Management

ARTIFICIAL MARBLE

work sequence:

- 2 or 3 coat of base plaster
- 2 or 3 coat of lime plaster of
- marble flour
- rubbing (with a board/trowel)
- several coat of whitewash mixed with color marble flour
- polishing

István Vidovszky PhD

Department of Construction Technology and Management

PATTERNED PLASTER SURFACES

pattern types:

- rubbed
- broomed
- scratched
- raked
- pointed
- combbed
- etc.

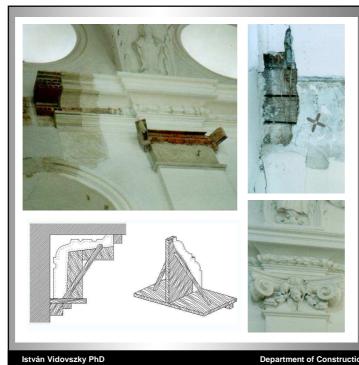
tools:

- plaster broom
- rake
- wire brush
- metal comb
- etc.

István Vidovszky PhD

Department of Construction Technology and Management

FRESCO


work sequence:

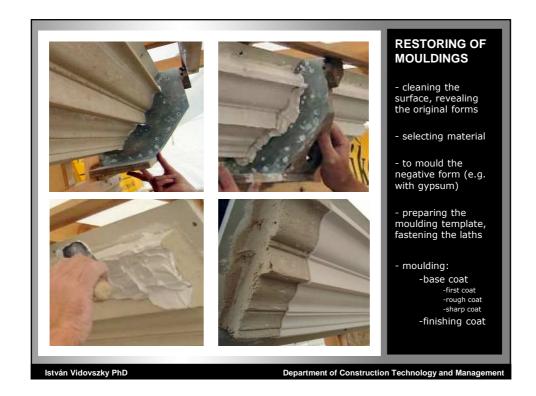
1.cleaning the wall
2.wetting the wall
3. two base coats of plaster
4.coarse-grained base coat of the painting
5.fine base coat of the painting
6.whitewash
7.painting

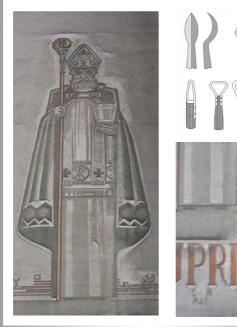
tools:

paintbrushestemplatesetc.

István Vidovszky PhD

Department of Construction Technology and Management


PARGETING


technology:
 gypsum- or
 cement plaster
 rough structure or
 precast elements

the base:
cast cement
cast metal (zinc or tin)
terracotta
gypsum

tools:

plastering tools moulding template scraper other templates

SGRAFITTO

technology: 1.base coat of plaster 2.colored layers of plaster 3.finish coat 4.manufacturing

tools:

• chisels

the pattern

- rulers
- spoons
- blades

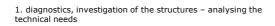
István Vidovszky PhD

Department of Construction Technology and Management

ETCHWORK IN PLASTER

technology:

- plastering
 making the etching
 paint the lines


PLASTER INLAY

technology:

- 1.plastering
 2.scraping according to the patterns
 3.fill with color mortar
- 4.smoothing 5.polishing

PLASTER REILEF

István Vidovszky PhD

- moisture
- salt load
- mechanical properties

2. suggested method (in case of no confronting technical needs)

- use of the original (historic material)
- preserving the original fabric of the building
- equal technology to the original one

RESTORING HISTORIC PLASTERS

•analyse

•guidelines

István Vidovszky PhD

Department of Construction Technology and Management

The treads of restoring with altering material / improper technology:

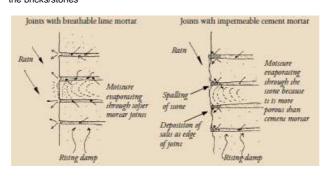
- removing the original facture /material the building losing ${\bf historical}$ ${\bf character/value}$
- material **incompatibilities -** improper (**self-destroying**) solutions
- aesthetic failures

HAZARDS OF IMPROPER RESTORING

TREADS/

István Vidovszky PhD

FREQUENTLY OCCURRING FAILURES OF RESTORING


- $\mbox{\bf thick}$ $\mbox{\bf mortar}$ coating covers the fine details of the surface (disfiguration)
- the \boldsymbol{color} of the used new material can be different from the host one
- restoring the building with different material the ${\bf vapor\ transport}$ capacity is also will be likely to differ

Department of Construction Technology and Management

Re-pointing, re-grouting

István Vidovszky PhD

- re-pointing, re-grouting with the original material
- in case of lime mortar removing cement pointing if the wall was regrouted with cement earlier and if can be removed without damaging the bricks/stones

- in case of 19th century and early 20th century buildings, where originally Portland cement was used – it should not be changed unless it is technically inevitable

István Vidovszky PhD

Department of Construction Technology and Management

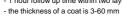
RESTORING LIME AND HYDRAULIC LIME MORTARS

Restoring material for lime mortars

- -every effort should be taken to match with the composition of the original material
- -similar vapor-transport capacity needed as the original material has
- no higher strength recommended than the original material has
- complex investigation of the structural system (vapor stream, frost hazard etc.) have to be proceeded
- for fine work 2-3 years lime putty should be used

RESTORING LIME AND **HYDRAULIC LIME PLASTERS**

István Vidovszky PhD


Department of Construction Technology and Management

Suggested compositions for Roman cement mortars (ROCEM)

Application	Aggregate	Cement-aggregate ratio	w/c
for cast elements	Ø < 10mm (round)	1 : 2 (1 :3)	0,65
for pargeting	Ø < 4mm (main		
(base coat)	fraction: 0,25mm)	1 : 1,5	0,6
for pargeting			
(finish coat)	Ø < 2,5 (1,25)mm	1:1	0,6

Remarks:

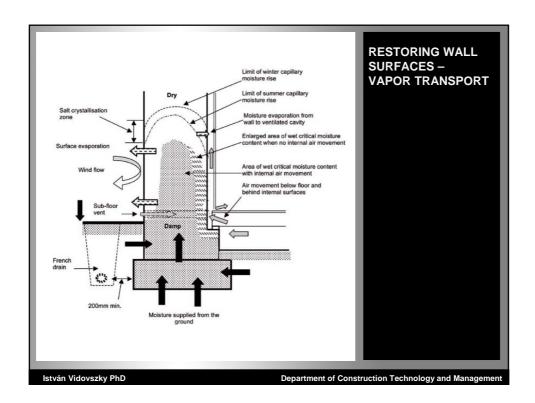
- time of binding 30 min
- citric acid can be used as retarder
- 1 hour follow up time within two layers

RESTORING ROMAN CEMENT PLASTERS

István Vidovszky PhD

RESTORING ROMAN CEMENT PLASTERS

- cleaning the surface removal of paints (techniques depend ing on the material)
- treating the $\ensuremath{\text{cracks}}$
- completion with mortar defined by composition analyses of the original material
- surface coatings with the same material if possible


István Vidovszky PhD

Department of Construction Technology and Management

- analyzing the ingredients (aggregates, !lime, cement)
- the **early Portland cements** are some way similar to Roman cement
- plastering work depending on the ingredients' ratio
- post treatment
- fiber or v. mesh reinforcement depending on the wall (base) structure, etc. $\,$

RESTORING PORTLAND CEMENT PLASTERS

István Vidovszky PhD

RESTORING Special mortars for evaporation **PLASTER** SYSTEMS FOR Use of mortars with high micorporousity and capillarity. **EVAPORATION Traditional method** Modern materials - lime mortar mixed -modern mortar with with charcoal dust microporous additives - pre-fabricated traditional mortar officially tested, with CE marking - renovation plaster - multi-layered plaster system (WTA) István Vidovszky PhD Department of Construction Technology and Management

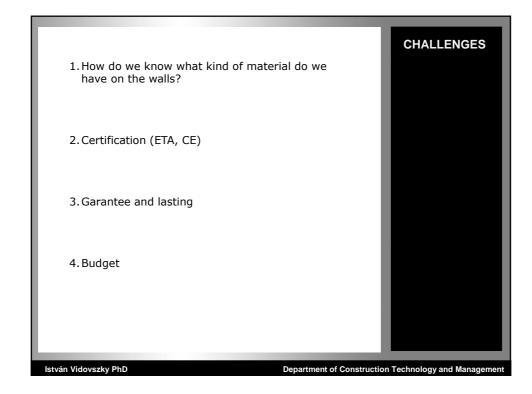
Special mortars for desalination

in case of high salt load in the wall

- Use of mortars with high micorporousity and capillarity that "pulls out" the salts from the wall (building a sacrificial coat)
- If this sacrificial coat is full of salt, it should be changed depending on the state of the wall:
 - with a new desalinating coat
 - with an evaporating coat

RESTORING PLASTER SYSTEMS FOR DESALINATION

István Vidovszky PhD


Department of Construction Technology and Management

- 1. If the original painting at least partially exists it should be analyzed (color, pigments, ingredient materials, etc.)
- 2. If a new paint is to be chosen it should have at least the same vapor-transport capacity as the wall's capacity is (e.g. lime-paints, silicate paints)

István Vidovszky PhD

RESTORING PAINTS ON PLASTERING

THANK YOU FOR YOUR ATTENTION!

 $\underline{\text{http://autonopedia.org/buildings}} \ \ \underline{\text{and}} \ \ \underline{\text{shelter/Rural}} \ \ \underline{\text{Building/Plaster}} \ \ \underline{\text{and}} \ \ \underline{\text{R}} \ \underline{\text{ender.html}} \ \underline{\text{2010-10-30}}$

http://www.rocare.eu/page/start.html 2010-10-30

Roman Cement - Volume 5 of a series EU-project ROCEM

Bereczky E. – Reichard E.: *A magyar cementipar története.* Budapest, Szilikátipari Központ

és Tervező Intézet, Cement és mészművek, 1970, p. 151

Dennis Urquhart (ed.): Conversion of Traditional Buildings Application of the Scottish Building Standards PART 1-2. Historic Scotland - Technical Conservatuon Research and Education Group , Edinburgh, 2007

http://www.rtbullard.com/stucco/progress/progress81.htm 2010-11-02

Richard Fawcett: *The Conversion of Architectural Ancient Monuments in Scotland. Guidance on Principles.* Historic Scotland – Heritage Policy, Edinburgh, 2001

The use of lime & cement in traditional buildings - HS INFORM, Historic Scotland, Edinburgh, 2007

Vidovszky, István, Katalin Bukta, and Péter Simon. "Vakolt homlokzatok helyreállításának feltételei Magyarországi piaci viszonyok mellett." *Épités-Épitészettudomány* 42.1 (2014): 43-56.

Weber, Helmut u.a.: Fassadenschutz. Der Leitfaden für die Sanierung, Konservierung und Restaurierung von Gebäuden. Kontakt & Studium – Rand 40. Expert Verlag, Grafenau 1980

Band 40. Expert Verlag, Grafenau, 1980. Reichel, A. – Hochberg, A. – Köpke, C.: *Plaster, Render, Paint and Coatings*. Birkhauser, Basel–Boston–Berlin 2004. REFERENCES

István Vidovszky PhD